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ABSTRACT 

The Chukchi Sea has recently experienced increased water temperatures, increased advection of 

water from the Bering Sea, declines in sea-ice concentration, and shorter periods of ice coverage. 

These physical changes are expected to impact trophic food-webs and ecosystem attributes. In 

this study, a series of research surveys were conduc ted in the summers of 2011-2015 to 

characterize the physical environment and its relation to the abundance of large zooplankton. 

Large zooplankton are key prey for many higher trophic level organisms including seabirds, 

marine mammals, and fishes. Yearly advection from the Bering Sea influenced the adult large 
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21 zooplankton abundance, but this influence was less apparent in the earlier development stages.  

Known development times of stages of zooplankton, along with their location within the study 

area, suggested that a fraction of the zooplankton standing stock was the result of local 

production. Decreased advection and later ice retreat resulted in higher abundances of the lipid-

rich copepod Calanus glacialis. Warmer conditions with increased advection from the Bering 

Sea resulted in higher abundances of euphausiids. Warming, sea-ice melting, and increases in 

transport of Bering Sea water and plankton into the Chukchi Sea are ongoing, and changes in 

food-web structure are likely to result. 

1. Introduction 

The zooplankton of the Chukchi Sea shelf consist of taxa that are more similar to the 

Pacific Ocean community than the Arctic Ocean community (Ashjian et al., 2010; Hopcroft et 

al., 2010; Eisner et al., 2013; Questel et al., 2013; Ashjian et al., 2017; Pinchuk and Eisner, 

2017), a result of the transport of North Pacific water through the Bering Strait into the Arctic. 

Northward advection through the Bering Strait combines several water masses that results in the 

transport of relatively warm, nutrient-rich water, as well as primary and secondary producers into 

the Arctic (Woodgate et al., 2005; Gong and Pickart, 2015; Danielson et al., 2017; Stabeno et al., 

2018). Northward advection through the Bering Strait in the summer, along with sea-ice melting 

and episodic upwelling from the Beaufort Sea on to the shelf and Barrow Canyon, results in a 

highly productive and complex shelf ecosystem that responds to local, regional and global 

forcing (e.g. Bond et al., 2019). Adding to the complexity of the Chukchi Sea shelf ecosystem,  

recent reports have shown dramatic changes in timing and extent of sea-ice coverage, along with 
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considerable increases in sea surface temperatures (National Snow and Ice Data Center, nsidc.org; 

Timmermans and Ladd, 2019; Perovich et al., 2019). 

In summer, the northern Bering and Chukchi seas experience increased day length and 

melting sea ice, resulting in a phytoplankton bloom. The bulk of the bloom sinks to the bottom 

due to the shallow depth (< 50 m) and relatively low grazing impact on phytoplankton (Campbell 

et al., 2009), supporting a robust benthic community.  Recent studies, however, have shown a 

temporal decrease in benthic biomass in the northern Bering Sea, suggesting a possible 

weakening of benthic-pelagic coupling as the ice retreat now occurs earlier in the season 

(Grebmeier, 2006a; Grebmeier, 2006b; Grebmeier, 2012). Concurrently, zooplankton biomass in 

the Chukchi Sea has increased over the past seven decades (Ershova et al., 2015), which can be 

explained, in part, by increasing temperatures, reduction in sea ice, and an increase in northward 

water transport through the Bering Strait (Ershova et al., 2015; Woodgate et al., 2015; 

Woodgate, 2018). These trends suggest a potential ecosystem regime shift is underway in the 

Pacific Arctic, with consequences for local food webs.  These changes emerge from both direct 

and indirect effects on both the indigenous biota residing in the ecosystem as well as the 

introduced species. Changes in the timing and type of production within the pelagic and benthic 

communities, will result in changes in benthic-pelagic coupling that have the potential to effect 

higher trophic levels such as birds, marine mammals, fish, and the people who live in the region. 

One specific taxon of interest for our studies were bowhead whales (Balaena mysticetus) 

that forage as they migrate southwestward in the fall through the Utqiagvik (formerly known as 

Barrow) region from the Beaufort Sea (Moore et al., 2010; Quakenbush et al., 2010; Citta et al., 

2012). Studies have reported improvements in bowhead body condition in association with 

earlier ice retreat and increase in the area of open water (George et al., 2015). The observed 
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improvements in bowhead body condition may be the result of increased prey populations, 

specifically euphausiids and copepods that dominate the prey in stomachs of bowhead whales 

harvested near Utqiagvik, Alaska (Lowry et al., 2004; Ashjian et al., 2010; Moore et al., 2010; 

George et al., 2015). Previous studies suggested that euphausiids are advected along the bottom 

from the northern Bering Sea into the Chukchi Sea, and subsequently concentrated into dense 

aggregations through upwelling onto the Beaufort Sea shelf towards Barrow Canyon (Berline et 

al., 2008; Ashjian et al., 2010).  Zooplankton sampling in the Chukchi Sea has generally 

underestimated populations of euphausiids because estimates were based on collections from 

small (0.25-0.6 cm diameter) aperture size plankton bongo nets (Hopcroft et al., 2010; Eisner et 

al., 2013; Questel et al., 2013; Ashjian et al., 2017; Pinchuk and Eisner, 2017) and because the 

predominantly daytime vertical or oblique sampling failed to target krill layers near the bottom 

(Coyle and Pinchuk, 2002). 

The main objectives of this study were 1) to understand the transport pathways of 

euphausiids from the Bering Strait to Barrow Canyon, 2) evaluate the abundance of other large 

planktonic prey for whales in the region, and 3) provide data on the status and trends of Chukchi 

Sea zooplankton communities. This study builds on other research based on conceptualized 

modeling to explain the dynamics of late-summer euphausiid populations in this region (Berline 

et al., 2008; Ashjian et al., 2010) by providing empirical data collected from epibenthic and 

plankton tows that should more accurately reflect the abundance of euphausiid and other 

epibenthic taxa. We compared epibenthic and pelagic zooplankton abundances to assess whether 

they were significantly different and to explore whether epibenthic tows were a more accurate 

reflection of near-bottom taxa.  We hypothesized that advection of zooplankton from the Bering 

Sea to be the main driver of zooplankton abundance in the region. To test this, we compared 
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zooplankton abundance across years and locations, and calculated krill development times to see 

if euphausiids captured in this study could have reached that stage after having been advected 

from the Bering Sea. 

2. Methods 

2.1. St udy area 

 

The Chukchi Sea has a broad, mostly shallow (<50 m) shelf situated between Alaska and 

Siberia (Fig. 1). Survey transects varied among years, 2011 – 2015, depending on the scientific 

focus for the year, available ship time, and ice distribution. Surveys were conducted in the late 

summer, lasting approximately 30 days (~August 5th – September 5th), except for 2014, which 

was September 22nd – October 12th. For analysis and description purposes, the study area was  

divided into ‘Beaufort’, ‘Southwest,’ ‘Central,’ and ‘Northeast’ regions that are established from  

statistically different oceanographic conditions (Eisner et al., 2012; Randall et al., 2019).  

2.2. P hysical data 

Hydrographic data, including temperature and salinity, were collected using a SBE 

911plus and FastCAT SBE 49 systems (SeaBird Electronics). Sea Surface temperatures (SST) 

were averaged from 5 – 10 m depth. We quantified broad-scale patterns in sea-ice concentration 

using satellite data. Sea-ice concentration (percentage of ocean covered by sea-ice) and extent 
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data were obtained after the surveys from a Scanning Multichannel Microwave Radiometer 

(SMMR) on the Nimbus-7 satellite and from the Special Sensor Microwave/Imager (SSM/I) 

sensors on the Defense Meteorological Satellite Program's (https://nsidc.org; Comiso, 1999). 

Bering Strait volume transport data were acquired from moored Acoustic Doppler Current 

Profiler (ADCP) measurements (Woodgate et al., 2015; Woodgate, 2018). Northeastward water 

column volume transport, in Sverdrups (Sv), was calculated according to Stabeno et al. (2018) 

from current data measured at C1, C2, and C3 moorings along the Icy Cape transect. Transport 

was averaged over 14 and 30 days leading up to the date that the station was sampled. 

2.3. Zooplankton net data 

Zooplankton were collected primarily during daylight hours using a multiple-opening and 

closing 1 m2 Tucker Sled trawl equipped with a FastCAT, and sled-like runners at the bottom so 

that samples could be taken in close proximity to the bottom. A 505 µm (2013-2015) or a 333 

µm (2011-2012) mesh net sampled while the sled was towed at a speed of 1.5-2.0 knots along 

the bottom for 2 minutes, then mechanically tripped to close and simultaneously open a second 

net to sample the entire water column from the bottom to the surface (wire retrieval rate 20 m 

min-1). For smaller taxa, a 25 cm net with 150 µm mesh was suspended in the larger net that 

profiled the entire water column. Note that this setup is not ideal in cases where clogging in the 

20- cm net occurs, thus the possibility of inaccurate volume filtered readings exist in this study. 

Samples that appeared questionable (e.g. low flowmeter readings, large jellyfish in the net) were 

excluded from the analysis. Smaller taxa such as C. glacialis and euphausiid furcilia were 

enumerated in the water column only and not in the epibenthic samples. Both Tucker nets were 
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136 equipped with a separate calibrated General Oceanics flow meter to estimate volume filtered. 

Plankton captured by the nets were washed into the cod-ends, sieved through appropriately-sized 

wire mesh screens and preserved in glass jars with sodium borate-buffered 5% Formalin.  

Samples were inventoried at the end of the cruise and then sent to the Plankton Sorting and 

Identification Center in Szczecin, Poland, for processing. Subsampled taxa were enumerated and  

identified to lowest possible genera and life stage and returned to the Alaska Fisheries Science 

Center for verification. Ten percent of the returned samples were checked for quality 

assurance/quality control of species identification and enumeration.  

2.4. Zooplank ton data analysis 

Zooplankton abundance was reported as four general categories in the context of known 

bowhead whale prey in the region (Lowry et al., 2004; Moore et al., 2010), including: 

euphausiids (primarily Thysanoessa raschii), amphipods (dominant species included Themisto 

libellula and unidentified Gammaridea), mysids ( dominant species included Neomysis rayii and 

Pseudomma truncatum), and copepods (Calanus glacialis). Analysis of variance (ANOVA) was 

used to examine epibenthic and pelagic variation across years in T. raschii, mysid, and amphipod 

abundance. 

Development times  of Thysanoessa spp. stages were estimated using the formula: 

𝑇2 ‒ 𝑇1 

𝑅2 = 𝑅1 ∗ 𝑄 10 
10 

where R1 and R2 are the development rates (d-1) at temperature T1 and T2 (◦C), respectively 

(Teglhus et al., 2015). We used the Q10 of 2.04 (Pinchuk and Hopcroft, 2006). The calculated 

temperature (T2) and development rate (R2) were normalized to 5 ◦C and 0.016 d-1 (for furcilia; 
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0.045 d-1 for calyptopis), obtained from Teglhus et al. (2015). We chose the measured rates from 

Teglhus et al. (2015) because of the similar temperature conditions (5-8 C) and because a mixed 

population of krill was used as we also have a mixed community. These were also the slowest 

known development rates for Thysanoessa spp. furcilia compared to previous studies (see Table 

3 in Teglhus et al., 2015); this prevented an overestimation of development rates of Thysanoessa 

spp. under conditions that may be significantly influenced by availability of food such as 

phytoplankton (Pinchuk and Hopcroft, 2007). Development times were then compared to 

satellite-tracked drifter data (Stabeno et al., 2018) to explore the possibility of recent 

reproduction in the Chukchi Sea. 

We used the mgcv package (Wood, 2011) in R (R Core Team, 2019) to fit generalized 

additive models (GAM) with Gaussian distribution to relate changes in C2 and C5 stages of C. 

glacialis, T. raschii (adult and juvenile), and euphausiid furcilia mean abundance to 

environmental variables. These two particular stages in each species were chosen to contrast 

different ages, with C2 representing younger and C5 representing older C. glacialis, and furcilia 

representing younger and adults/juveniles representing older T. raschii. For simplicity, we 

excluded stages C3 and C4 from the analysis as these stage abundances are correlated to the C5 

stage (data not shown). We chose to exclusively use epibenthic abundances of T. raschii since 

most of our sampling occurred primarily during the day and when the vast majority of 

euphausiids would be at or near the bottom. Restricted Maximum Likelihood (REML) method 

was used as the smoothing parameter estimation. The model selection was done by assessing 

deviance explained, R2, and Akaike information criterion (AIC). Residuals were analyzed to 

ensure there were no obvious deviations from normal distributions, and we examined the 

response versus. fitted value for patterns. We assessed ten environmental variables for inclusion 
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in the GAMs including: latitude, longitude, bottom temperature, surface temperature, bottom 

salinity, surface salinity, 14 and 30-day northeastward transport, year, and day of the year 

(hereinafter referred to as ordinal day).  

3. Results 

3.1. Environmental Conditions 

Sea surface temperatures (SST) were warmest in 2011 (mean SST 6.89 ± 1.35 ◦C) and 

coldest in 2013 (mean SST 2.64 ± 2.61 ◦C). Both 2012 (mean SST 5.46 ± 2.41 ◦C) and 2015 

(mean SST 6.13 ± 2.18 ◦C) had similar warm SSTs towards the central and southwest portion of 

the survey, and colder SSTs across the northeast portion; however, 2012 was colder in the 

northeast region (Fig. 2). Sea surface temperatures in 2014 (mean SST 3.09 ± 1.62C) were 

colder over the entire survey area and had substantially less northeast to southwest variability. 

Randall et al. (2019) using the mean bottom temperatures in the central region, found 2013 (-

1.4C) to be the coldest year, with 2011-2012 and 2014-2015 having similar warmer bottom 

temperatures (~2C). Similarly, differences between years were evident from initial dates at 

which ice concentration was less than 10% (Table 1). Sea-ice remained in the northeast region 

until mid to late August in years 2012-2014, and melted in mid- to late July in 2011 and 2015. 

Monthly mean northward transport (Sv) through the Bering Strait tended to peak in the 

spring and summer (~May-August), with lower transport in the winter (Fig. 3). Higher 

spring/summer transport occurred in 2011and 2015, peaking at around 1.92 (± 0.09) Sv in May 
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and 1.87 (±0.06) Sv in July of 2015 and 1.91 (±0.10) Sv in June of 2011. Spring and summer 

transport was moderate in 2014 and lower in 2012 and 2013, with mean values as low as 1.14 (± 

0.18) and 1.18 (± 0.14) in August of 2012 and 2013, respectively. 

3.2. Zooplankton abundance 

Average pelagic amphipod abundances increased from 2011 to 2015; average benthic 

abundances were generally higher than pelagic abundances but also increased over the same 

period (Fig. 4a). Overall, 2013 and 2011 had the highest and lowest average amphipod 

abundance respectively. Mysid epibenthic and pelagic abundances were relatively low across all 

years (Fig. 4b), but epibenthic abundances were relatively higher in all years and there were no 

increasing or decreasing trends across the years. The euphausiids community consisted of four 

species of the genus Thysanoessa: T. inermis, T. longipes, T. spinifera, and T. raschii; the latter, 

being the most abundant (approximately 70% of total abundance) of the four, was singled out in 

this study for purposes of simplicity. Epibenthic T. raschii abundances were lowest in 2013 and 

highest in 2014 (Fig. 4c). Pelagic T. raschii abundance was lowest in 2011 and highest in 2015.  

There were no consistent differences in the abundance of T. raschii, mysid, and 

amphipods between the bottom layer and water column when we took into account year and a 

depth-year interaction in our analyses.  ANOVA results did not show significant differences 

between epibenthic and pelagic T. raschii abundances independent of year. However, T. raschii 

abundance did show significant differences between years (F = 3.20, p = 0.01), independent of 

depth and depth/year interactions (F = 5.56, p <0.001). Similarly, ANOVA results did not show 

significant differences between epibenthic and pelagic amphipods independent of year (F = 2.16, 

10 



 

 

 

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

p = 0.14). However, amphipod abundances did show significant differences among years 

independent of depth (F = 4.467, p = 0.001) and depth/year interactions (F = 3.294, p = 0.01). 

ANOVA results showed significant differences between epibenthic and pelagic mysids 

independent of year (F = 9.59, p = 0.002), years independent of depth (F = 4.80, p = 0.0008), and 

depth/year interactions (F = 0.84, p = 0.50). Time of day was hypothesized to influence 

euphausiid abundance, however, ANOVA results did not find differences in day/night sampling 

abundances of T. raschii at the p <0.05 significance level. 

A post-hoc Tukey’s ‘Honest Significant Difference’ test of depth-year interactions of T. 

raschii, mysids, and amphipods showed 2014 and 2015 were significantly (p <0.05) different 

from most previous years (Table 3). Within years 2014 and 2015, T. raschii showed significant 

(p <0.05) differences between epibenthic and pelagic depths. Similarly, both mysids and 

amphipods showed significant (p <0.05) differences between epibenthic and pelagic depths 

within 2014. Overall, we cannot independently assess year without noting whether T. raschii, 

mysids, or amphipods samples were caught in the water column or just above the bottom. 

There was a lack of spatial differences among years for amphipods, with positive catches 

across all regions (Fig. 5a). The highest amphipod frequency of occurrence was in 2013, with 

complete absence in only one station (epibenthic and pelagic combined). Mysid abundance was 

low for each year across all regions (Fig. 5b); within years, more mysids were captured in the 

northeast than other regions. Mysid had the highest frequency of occurrence in 2014 with 

animals captured at stations in 3 of the 4 regions (epibenthic and pelagic combined). A lack of 

spatial differences of T. raschii among years was evident (Fig. 5c), with positive catches 

appearing across most regions.  The highest T. raschii frequency of occurrence was in 2014, with 

presence detected from at least one station in three of the four areas (epibenthic and pelagic 
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combined). There were no obvious trends in presence/absence or abundance as a function of 

distance from land. 

Abundances of C. glacialis were lower in warmer years (2011, 2014, and 2015) and 

higher in colder years (2012, 2013; Fig. 6). Calanus glacialis were ubiquitous across all regions, 

with presence detected at most stations (Fig. 7). 

3.3. Early life stages 

Development time calculations suggest that it takes approximately 51 and 78 days at 8 

and 2°C water temperature, respectively, for Thysanoessa spp. stages to develop from eggs to 

furcilia (Table 2). Note that the furcilia counted in this study were not identified to species.  

Euphausiid furcilia stages were most abundant in the central and southwestern regions of each 

year (Fig. 8).  Euphausiid furcilia were completely absent from the northeastern region in 2012 

and 2013.  Both 2011 and 2014 had similar abundances along the central and southeastern 

regions, with 2011 having slightly higher abundances in the northeast. In 2015, highest 

abundances were located in the central region, with lower abundances extending into the 

northeast. Euphausiid calyptopis, a developmental stage of much shorter duration (~40 days 

shorter; Teglhus et al., 2015), were only caught in very low abundances (~1.0 log10 (Num. m-2)) 

in 2011 at 3 stations (map not shown) from the northeast and southwest regions.  

Spear et al. (2019) estimated C. glacialis egg to C2 stages have approximate development 

times of 8 to 12 days at temperatures ranging between 12 and -1.5 °C respectively. Calanus 

glacialis C2 stages were almost exclusively caught in the northeast region, including Icy Cape 
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(Fig. 9). Higher total abundances appeared in both 2012 (4.92 log10 (Num. m-2)) and 2013 (5.19 

log10 (Num. m-2)), while the lowest total abundances were in 2011 (3.38 log10 (Num. m-2)). 

3.4. Relationships between plankton abundance and physical variables 

Bottom temperature, 30-day northeastward transport, longitude, and ordinal day were the 

most significant variables associated with mean T. raschii abundance (Table 4). The model 

helped explain 42.3% of the deviance with an r2 of 0.38. Extreme lower and higher bottom 

temperature conditions were associated with lower T. raschii abundance (Fig. 10). There was a 

positive relationship between 30-day northeastward transport and T. raschii abundance. The 

longitude parameter also showed that T. raschii abundance was positively associated with the 

northeastern and southwestern portions of the study area. The strong positive relationship with 

ordinal day showed that higher abundances showed up later in the year in 2014. This is because 

the only year in which we sampled past day of year 260 was 2014. Furcilia abundance had 

significant relationships with bottom temperature, 14-day northeastward transport, year, ordinal 

day, and longitude. The model explained 56.8% deviance in abundance for euphausiid furcilia 

with an r2 of 0.53 (Table 4).  There was not a clear abundance pattern in relation to the bottom 

temperature (Fig. 11).  In contrast to the relationship between transport and T. raschii adults, 

there was a negative relationship with furcilia abundance and 14-day northeastward transport.  

The model helped explain 43% of the deviance with an r2 of 0.39 of the C. glacialis C5 

stage (Table 4). The most significant parameters included surface salinity, surface temperature, 

bottom temperature, 14-day transport, ordinal day, and year. Higher surface temperatures had a 

positive association, while lower surface had a slightly negative association, with C5 abundances 
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(Fig. 12). Conversely, lower bottom temperatures had a positive relationship and higher bottom 

temperatures had a negative relationship with C5 abundance. Stage C5 abundance was also 

negatively associated with lower salinity seawater. There was a slight negative association with 

strong northeastward transport and C5 abundance. Interestingly, there was not a significant 

association with northeastward transport and C. glacialis C2 stages. The C2 stage was similar to 

C5 stages in the relationship with bottom temperatures, as there was a negative relationship with 

higher bottom temperatures and a positive relationship lower bottom temperatures (Fig. 13). 

There was positive association of C2 stages with higher longitudes. Overall, C2 stages had the 

strongest GAM model, which explained 57% of the deviance and a r2 of 0.55 (Table 4). 

4. Discussion 

4.1. Euphausiid transport 

T. raschii is an amphiboreal species whose distribution also extends to the Arctic Ocean 

and associated continental shelves.  We observed the presence of T. raschii in all years near 

Utqiagvik, with relatively high abundances in 2014 and 2015.  The annual presence of 

euphausiids there is important as they are a dominant component of the diet for bowhead whales 

in the region (Lowry et al., 2004; Moore et al., 2010).  A positive association with northeastward 

transport and a positive association with higher longitudes, implies that T. raschii were advected 

from the south.  The positive association with lower longitudes may be the result of krill being 

advected into the Chukchi Shelf from the Beaufort Sea as described by Ashjian et al., (2010); 
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other explanations include lack of sampling in the central region in 2013, sampling later in the 

2014, or because of the current patterns that tend to extend farther offshore in the central region 

(Stabeno et al., 2018), resulting in animal presence just outside of the sampled transect. Overall, 

these findings support the hypothesis of Berline et al. (2008) and Ashjian et al. (2010) that the 

euphausiids concentrated by physical processes near Barrow Canyon likely originated from the 

northern Bering Sea. 

Conversely, temperature-dependent euphausiid furcilia development times suggest their 

extent into the central and northeast regions in warmer conditions was a result of spawning in the 

Chukchi Sea.  Transport of water takes ~90 days to reach Icy Cape from the Bering Strait 

(Stabeno et al., 2018).  This is roughly 12 to 40 days longer than the development time from egg 

to furcilia at comparable temperatures. The hypothesis of local production is also supported by 

the negative relationship with 14-day transport or lack of clear relationship with bottom 

temperatures. In particular, the negative relationship with 14-day transport (in addition to a lack 

of association with 30-day transport) showed that the greater and more recent transport resulted 

in reduced abundances, suggesting they were likely recently spawned nearby and subsequently 

transported away. 

Adult euphausiids were present in the northeast region in 2012 and 2013, even though 

overall transport during those years was low.  The absence of younger stages could have resulted 

from a change in the timing of reproduction relative to our sampling, failed spawning, or very 

high mortality of the larvae because of cold temperatures or high predation. Euphausiid eggs 

were present in the northeast region in 2014 and 2015, but were absent in 2012 and 2013 (egg 

data not collected in 2011), suggesting reproduction only occurred when this region was not 

occupied by colder water masses. 
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The higher pelagic abundances of euphausiids in 2013 and 2015 were not due to a 

day/night effect as a comparison of day/night abundances found no significant differences (not 

shown). The significant increase in abundance of T. raschii in 2014, compared to remaining 

years, suggests that sampling later in the season likely had considerable impact. This is 

evidenced by the relationship between ordinal day and euphausiid abundance in 2014.  Other 

environmental and physical results did not suggest any other anomalous features that may have 

caused this significant jump in abundance. Thus, it suggests that because we sampled later in 

2014 we observed more euphausiids compared to other years. This is most likely the result of 

advection timing (as explained in Berline et al., 2008), but may also reflect local recruitment. 

Alternative explanations for increased abundance include local production or retained for a 

longer period of time. Most historical surveys have not sampled later than mid-September to 

avoid disturbing subsistence hunting by Iñupiat whalers as the whales migrate westward from the 

Beaufort. Thus previous surveys (Grebmeier and Harvey, 2005; Lane et al., 2008) reporting low 

numbers of euphausiids could be due to the mismatch between euphausiid transport from the 

south and survey timing. 

Our estimates of adult euphausiid abundance may be somewhat improved over prior 

estimates derived from small mouth plankton nets towed only in the water column (e.g. Eisner et 

al., 2013).  However, euphausiids are difficult to accurately estimate even with larger nets that 

sample at faster tow speeds. (e.g. Hunt et al., 2016).  Net avoidance by euphausiids has long been 

recognized as chronic problem in oceanographic studies (e.g. Brinton, 1967; Herman et al., 1993; 

Sameoto et al., 2011; Wiebe et al., 2013).  Net avoidance abilities may even extend to the young 

stages (e.g. Smith, 1991). Future work using acoustical or optical techniques may be able to 
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provide better estimates of euphausiid abundance, although as this study demonstrated there is a 

need to sample very close to the seafloor. 

4.2. Other large zooplankton 

We found that C. glacialis were most abundant in colder conditions, with the abundance 

increase being driven by earlier development stages. This finding is supported by research 

showing that C. glacialis were strongly tied to the ice edge algae production, which is increased 

in colder years (Søreide et al., 2010).  Both C2 and C5 stages showed a significant positive 

association with colder bottom temperatures. The C5 stage, as opposed to the C2 stage, also had 

a positive association with warmer surface temperatures and significant relationship with 

northeastward transport, suggesting that C5 stages were more likely to be influenced by 

advection. The C2 stage had significantly higher abundances in the northeast region, a negative 

relationship with higher surface temperatures, and lack of a significant relationship with 

transport, suggesting local production rather than transported from the south. This is supported 

by previous research showing C. glacialis having approximate development times of 8 to 12 

days at temperatures between 12 and -1.5°C, respectively, from egg to C2 stage (Hirst and 

Lampitt, 1998; Kiørboe and Hirst, 2008; Spear et al., 2019). As described earlier, transport times 

from the Bering Sea to the northeast region were much longer than development times from egg 

to C2 Stage. C2 copepodites were also more abundant in 2012 and 2013, when temperatures 

were coldest in the northeast. This suggests that the overall abundance increases in C. glacialis in 

2012 and 2013, when temperatures were colder, sea ice melted later in the northeast region, and 

advection was lower, was primarily due to local reproduction. Abundance increases in the 
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northeast region could also be due to upwelling onto the Chukchi Shelf from the Beaufort Sea 

(Ashjian et al., 2010). Conversely, the lower abundances of C2 stages in warmer conditions may 

be a result of faster and earlier development into later stages. Thus the various stages of C. 

glacialis region likely have multiple sources (in situ reproduction and transport from the south 

and east), and the absolute abundance is a function of local and regional processes. This is a 

notable result; later stages of C. glacialis are known to be the primary prey of bowhead whales 

around West Greenland (Heide-Jørgensen et al., 2013), and a significant contribution to their diet 

in the Chukchi and Beaufort seas (Lowry et al., 2004; Moore et al., 2010). In addition, if C. 

glacialis are developing faster, they may enter into diapause earlier creating a mismatch with 

migrating whales. 

The significant differences in pelagic and epibenthic abundance in both mysids and 

amphipod highlights the importance of sampling near the bottom. Mysids and some amphipod 

species may spend time in the water column; therefore, sampling the water column and 

epibenthic layer will yield improved estimates of their abundance. Epibenthic amphipod 

abundance was significantly higher in 2013 than any other year sampled in this study. This is a 

notable observation in the context of a changing climate, given that 2013 was also the coldest 

year and certain species of amphipods, in particular, have known ice-associated and bottom 

dwelling habits (Vinogradov, 1999; Gradinger and Bluhm, 2004).  Both amphipods and mysids 

are prey for multiple marine mammals, including bearded seals (Erignathus barbatus; Cameron 

et al., 2010), Pacific walrus (Odobenus rosmarus divergens; Sheffield and Grebmeier, 2009), 

beluga whales (Delphinapterus leucas; Quakenbush et al., 2015), gray whales (Eschrichtius 

robustus; Nerini, 1984; Darling et al., 1998), and bowhead whales (Lowry et al., 2004). Given 
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the importance of mysids and amphipods to Arctic food webs, it is important to monitor their 

response to changes in ice cover and water temperatures. 

4.3. Chukchi Sea large zooplankton status and trends 

The findings of this study are relevant to the potential response of lower trophic levels to 

climate warming, including changes in Arctic food webs. Recent studies have found a 50% 

increase in water volume transport through the Bering Strait to the Chukchi Sea from 2001-2014; 

the immediate impact to the physical environment is an increase in heat flux that is a potential 

trigger for Arctic sea-ice melt and retreat (Woodgate et al., 2010, 2015; Woodgate, 2018).  As 

the climate warms, increases in primary and secondary production will result in changes in 

abundance of lipid-rich zooplankton, but it remains to be seen what the overall lipid availability 

will be (Renaud et al., 2018).  Two of the species targeted in this study, C. glacialis and T. 

raschii, have an average percent lipid content of approximately 11-15% and 3-5%, respectively, 

both having a higher average percent lipid content in colder years (Heintz et al., 2013). There is a 

general consensus that densities of sea ice-associated, lipid-rich C. glacialis are expected to 

decline due to loss of ice in the region. (Tremblay et al., 2012; Arrigo and Van Dijken, 2015; 

Grebmeier et al., 2006a; Grebmeier, 2012; Moore and Stabeno, 2015; Renaud et al., 2018). In 

addition, this study provides evidence that increases in large zooplankton abundance such as 

euphausiids (which also contain depot lipids) is likely to occur, either via advection from lower 

latitudes or changes in local production. This is supported by previous studies which found an 

increase in zooplankton biomass over several decades in the Chukchi Sea (Ershova et al., 2015). 

An increase in abundance of prey such as euphausiids will likely benefit higher trophic level 
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predators such as planktivorous fish, seabirds and marine mammals.  Recently, studies have 

suggested that the abundance of other planktivores in the northern Bering Sea and Chukchi 

appear to be changing.  For example, in the Bering Sea, there has been a decrease in the lipid-

rich nodal species Arctic cod (Boreogadus saida) and an increase in the commercial species 

walleye pollock (Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus; Stevenson and 

Lauth, 2019).  Walleye pollock have been observed in the Chukchi and Beaufort seas (e.g. 

Logerwell et al., 2015) and is an important planktivore in the southeastern Bering Sea ecosystem 

consuming both euphausiids and large copepods (Dwyer et al., 1987; 

https://access.afsc.noaa.gov/REEM/WebDietData/DietDataIntro.php). Walleye pollock could 

become an effective competitor for large zooplankton with other fishes, seabirds, and marine 

mammals if its abundance continues to increase in the northern Bering, Chukchi and Beaufort 

seas.  At present, however, there is evidence of improved body condition of bowhead whales 

returning from the Beaufort (George et al., 2015).  This suggests that the plankton community in 

their summer feeding grounds has changed in either biomass, species composition or both. 

The strong interaction between top-predators (whales, seabirds, and Arctic cod) and 

copepods/krill in the northern Chukchi appeared to be mediated by both advection and local 

production related to sea-ice dynamics. What remains to be seen is whether arctic shelf 

ecosystems will continue to be bottom-up forced by sea-ice dynamics or whether climate-

mediated impacts on intermediate trophic levels (e.g. large zooplankton and small fishes) could 

become the predominant controlling mechanism, e.g. wasp-waist control (Gaichas et al., 2015; 

Griffiths et al., 2013; Fauchald et al., 2011). If warming continues, the bottom-up dynamics in 

this location would likely be disrupted by increased advection over longer time-periods as well 
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as a lack of localized, lipid-rich, ice-associated production. Such a shift would greatly impact the 

trophic dynamics in the region. 

5. Conclusions 

This study analyzed five successive years of zooplankton abundance over a wide range of 

physical oceanographic characteristics in the Chukchi Sea to better understand the status and 

trends in prey availability for baleen whales, seabirds, and planktivorous fish. The coldest year 

(2013) was highlighted by later summer sea-ice melt, colder sea surface and bottom 

temperatures, and lower northward transport through the Bering Strait during the spring and 

summer months. Generally, the warmest years accompanied with earlier summer sea-ice melt, 

warmer sea surface and bottom temperatures, and higher Bering Strait transport during the spring 

and summer months. Adult euphausiid abundances differed across warm and cold conditions. 

These differences appeared most pronounced regionally (NE-SW gradient) and were related to 

transport, which suggests that most of these euphausiids are transported to the Chukchi Sea from 

the Bering Sea. The lack of furcilia in 2012 and 2013, (except in the SW), and the presence of 

furcilia in 2011 and 2014-15, suggests that only in these warmer years with higher advection 

were earlier stages transported to the northeast  region of the Chukchi Sea. We also found that 

some euphausiids might be locally produced based on the development times. In contrast, the C. 

glacialis C5 stages were found across all years, but C2 stages were found primarily in the 

northeast and were more abundant under colder conditions which suggests local production of 

copepods. Thus, the large numbers of euphausiids and copepods that dominate the prey in 
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477 stomachs of bowhead whales harvested near Utqiagvik, Alaska (Lowry et al., 2004; Ashjian et 

al., 2010; Moore et al., 2010; George et al., 2015) are likely the result of transport of euphausiids 

to this location and the contribution of locally produced C. glacialis, although Calanus found in 

the region potentially come from several sources or origins. 
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Fig. 1. Study area in the Chukchi Sea. Each region is symbolized by a colored circle. The study 

area was split up into southwest, central, northeast, and Beaufort regions. The pink shaded region 

indicates Barrow Canyon. 

Fig. 2. Sea surface temperature (◦C) averaged from 5-10 m for each year. 

Fig. 3. Mean transport (Sv) of water by month for each year through the Bering Strait. The grey 

underlay highlights the approximate peak transport months. 

Fig. 4. Yearly epibenthic and pelagic total abundance (Log10(Num m-2)) for amphipods (a), 

mysids (b), and Thysanoessa raschii (c). 

Fig. 5. Yearly maps of epibenthic and pelagic total abundance (Log10(Num m-2))for amphipods 

(a), mysids (b), and Thysanoessa raschii (c). The letter “X” denotes tows where the taxon was 

absent. Note that the scale differs among taxa. 

Fig. 6. Yearly pelagic total abundance (Log10(Num m-2)) of Calanus glacialis. 

Fig. 7. Yearly maps of pelagic total abundance (Log10(Num m-2)) of Calanus glacialis. The letter 

“X” denotes tows where the taxon was absent. 

Fig. 8. Yearly maps of pelagic total abundance (Log10(Num m-2)) of euphausiid furcilia. The 

letter “X” denotes tows where the taxon was absent. 

32 



720
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740

721 Fig. 9. Yearly maps of pelagic total abundance (Log10(Num m-2)) of Calanus glacialis C2 stage.  

The letter “X” denotes tows where the taxon was absent. 

Fig. 10. GAM smooth for the distribution of Thysanoessa raschii epibenthic abundance  

(Log10(Num m-2)), 2011-2015. Variables included mean bottom temperature (a), 30-day  

transport (b), longitude (c), and day of year (ordinal day) (d). 

Fig. 11. GAM smooth for the distribution of euphausiid furcilia pelagic abundance (Log10(Num 

m-2)), 2011-2015. Variables included mean bottom temperature (a), 14- day transport (b), 

longitude (c), day of year (ordinal day) (d), and year (e). 

Fig. 12. GAM smooth for the distribution of Calanus glacialis C5 stage pelagic abundance  

(Log10(Num m-2)), 2011-2015. Variables included mean surface temperature (a), surface bottom 

salinity (b), bottom temperature (c), 14-day transport (d), day of year (ordinal day) (e), and year 

(f). 

Fig. 13. GAM smooth for the distribution of Calanus glacialis C2 stage pelagic abundance  

(Log -2
10(Num m )), 2011-2015. Variables included mean surface temperature (a), bottom  

temperature (b), longitude (c), day of year (ordinal day) (d), and year (e). 
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744 Tables 

Table 1. Estimate of the initial date at which ice concentration was less than 10% within the 
southwest and northeast region of the sampling area. 746 

747 Southwest Northeast 
2011 
2012 
2013 
2014 

3 June 
22 June 
29 June 
16 June 

15 July
19 August 
31 August
16 August 

2015 14 June 18 July 

748 

749 

751 

752 

753 

754 

756 

757 

758 Table 2. Amount of days at different temperatures for Thysanoessa spp. stages to develop from  
759 eggs. 

Stage  12 °C  8 °C  2 °C  -1.5 °C 
Calyptopis 13.4 17.8 27.3 35 
Furcilia 38.2 50.9 78 100 
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Table 3. Post-hoc Tukey’s test significant p values for the depth-year interactions of each taxon. 

Depth:Year p value 
Epibenthic:2014 – Pelagic:2011 0.0200 
Pelagic:2015 – Pelagic:2011 0.0252 
Epibenthic:2014 –  Epibenthic:2011 0.0462 
Epibenthic:2014 – Pelagic:2012 0.0179 

CH
II

 

Pelagic:2015 – Pelagic:2012 0.0234 

RA
S Epibenthic:2014 –  Epibenthic:2012 0.0417 

T.
 Pelagic:2015 – Epibenthic:2011 0.0494 

Epibenthic:2014 – Pelagic:2014 0.0235 
Pelagic:2015 – Pelagic:2014 0.0307 
Epibenthic:2015 –  Epibenthic:2014 0.0342 
Epibenthic:2015 – Pelagic:2015 0.0390 

Epibenthic:2014 – Pelagic:2011 0.0000 
Epibenthic:2014 –  Epibenthic:2011 0.0001 
Epibenthic:2014 – Pelagic:2012 0.0000 

D
S Epibenthic:2014 –  Epibenthic:2012 0.0001 

M
Y

SI Epibenthic:2014 – Pelagic:2013 0.0008 
Epibenthic:2014 –  Epibenthic:2013 0.0009 
Epibenthic:2014 – Pelagic:2014 0.0000 
Epibenthic:2014 –  Epibenthic:2015 0.0001 
Epibenthic:2014 – Pelagic:2015 0.0001 

Epibenthic:2014 – Pelagic:2011 0.0060 
Epibenthic:2014 –  Epibenthic:2011 0.0017 

O
D

S Epibenthic:2014 – Pelagic:2012 0.0010 

IP Epibenthic:2014 –  Epibenthic:2012 0.0014 

PH Epibenthic:2014 – Pelagic:2013 0.0101 

A
M Epibenthic:2014 –  Epibenthic:2013 0.0087 

Epibenthic:2014 – Pelagic:2014 0.0063 
Epibenthic:2014 – Pelagic:2015 0.0312 
Epibenthic:2014 –  Epibenthic:2015 0.0010 
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 Significant terms R2  Deviance explained 

Calanus 
glacialis C5 

Surface Salinity*** 
Surface Temperature* 

0.394 43% 

14-day Transport* 
Bottom Temperature*** 

Ordinal Day*** 
Year*** 

Calanus Mean Bottom Temperature*** 0.551 57% 
glacialis C2 Mean Surface Temperature** 

Longitude* 
Julian Day* 

Year* 

Thysanoesssa Mean Bottom Temperature** 0.375 42.3% 
raschii 30-day Transport* 

Longitude*** 
Ordinal Day *** 

 Euphausiid Mean Bottom Temperature *** 0.53 55.8% 
furcilia 14-day Transport*** 

Longitude*** 
Ordinal Day*** 

Year*** 

793 Table 4. GAM model significant terms for each taxon with R2  and the percentage of deviance 
explained.* p < 0.05; ** p < 0.01; *** p < 0.001 794 
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